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We presentanumerical method for solving Poisson’s equation, with variable coeffi-
cients and Dirichlet boundary conditions, on two-dimensional regions. The approach
uses a finite-volume discretization, which embeds the domain in a regular Cartesian
grid. We treat the solution as a cell-centered quantity, even when those centers are
outside the domain. Cells that contain a portion of the domain boundary use conser-
vative differencing of second-order accurate fluxes on each cell volume. The calcula-
tion of the boundary flux ensures that the conditioning of the matrix is relatively un-
affected by small cell volumes. This allows us to use multigrid iterations with a simple
point relaxation strategy. We have combined this with an adaptive mesh refinement
(AMR) procedure. We provide evidence that the algorithm is second-order accu-
rate on various exact solutions and compare the adaptive and nonadaptive calcula-
tions. @ 1998 Academic Press

1. INTRODUCTION

In this paper we present a numerical method for solving the variable-coefficient Pois
equation with Dirichlet boundary conditions,

V.-V =p onQ, ¢=9g 0naiQ 1)

on a bounded two-dimensional regiéh where 8= g(x, y) > 0. Our approach uses a
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finite-volume discretization which embeds the domain in a regular Cartesian grid. We
the solution as cell-centered on a rectangular grid, even when the cell centers are ol
the domain. We discretize (1) on each cell by applying the divergence theorem on
intersection of that cell witlf2. This leads to a conservative, finite-volume discretizatic
on the cells that intersed®<2. Thus, the discretized operator is centered at the centro
of partially covered cells, in contrast to the solution values, which are centered on
rectangular grid. The fluxes at the cell edges are computed using second-order ac
differences of the cell-centered values of the solution. In cells away from the boundary
algorithm reduces to the standard five-point discretization for (1), with a truncation e
that is second order in the mesh spacing. On the boundary, this discretization result:
first-order truncation error; however, this boundary truncation error induces a solution €
that is third-order in the mesh spacing, so that the overall solution is second-order acct
For each partially covered cell, the flux through the boundary is calculated using only va
from other cells. This leads to a linear system whose conditioning properties are unift
independent of the smallest partial cell volume, and are essentially the same as thc
a problem without irregular boundaries having the same rectangular mesh spacing.
allows us to use multigrid iterations with a simple domain-decomposition point relaxat
strategy. We have combined this with an adaptive mesh refinement (AMR) proced
based on the block-structured approach of Berger and Oliger [9]. We show evidence
the algorithm is second-order accurate for various exact solutions and compare the ad:
and nonadaptive calculations.

Our motivation is to provide a conservative discretization of engineering problems, s
as viscous fluid flow or heat conduction, on changing domains. Numerical algorithms
these applications require the solution of elliptic equations on irregular domains. Genel
such equations are derived from a conservation law by using a control volume analysis, ¢
with assumptions about the fluxes of conserved quantities through the surface. This |
of view, when applied to a numerical method, has traditionally led to conservative fin
volume formulations. In particular, Cartesian grid embedded boundary methods can
advantages over structured or unstructured grid methods, because of simpler grid gene!
The underlying regular grid also allows the use of simpler data structures and nume
methods over a majority of the domain. Accuracy is maintained at the boundaries usi
more complicated algorithm, but this extra work is on a one-dimension-smaller set of po

The approach taken here is motivated by two sets of ideas. The first is that of using
servative volume-of-fluid representations of fronts and irregular boundaries [2, 7, 13,
In this approach, the irregular boundary geometry is represented locally by intersec
the domain with each rectangular cell and approximating the operator using a conse
tive, finite volume discretization. These methods have been very successful for a varie
problems involving hyperbolic conservation laws in two and three space dimensions,
ticularly when used in concert with AMR. The second set of ideas motivating our appro
is that of Younget al. [36], in their treatment of steady transonic potential flow arour
complex bodies. They used a variational formulation based on rectangular finite elem
where nodal values of the solution could be inside or outside the domain. However,
corresponding volume integrals were only over the regions of each cell that were insid
physical domain. These two sets of ideas were first combined for solving the incompres
Euler equations using a projection method in [5]; the algorithm required solving a Pois
equation with Neumann boundary conditions. They included both variational and con
vative (MAC-based) forms of the projection operator. We have modified the conserve
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formulation in [5], to make it formally consistent, and we have added a means of impos
Dirichlet boundary conditions that maintains the good conditioning of the matrix.

A variety of finite difference discretizations for (1) for the case of irregular boundari
have been presented; a good summary can be found in [22]. The “immersed bounc
method ([33] for example), uses discrete delta functions on domain boundaries, to ent
no-flow boundary conditions for incompressible flows on changing domains. This met
is extremely flexible, although it has been shown to lose accuracy in some situations |
A related approach called the “immersed interface” method [22], uses a rotated coord
system and interface jump conditions to find a stencil with genuinely first-order accu
truncation error. This has been successfully applied to a variety of problems with imme
boundaries [26] and has recently been augmented with fast solution methods, sut
GMRES [27] and multigrid [1] algorithms. The practical extension of this method to prc
lems in three dimensions and those with variable coefficients is still being pursued.

Another approach was presented by McKenategl. [30], which used a fast multipole
and boundary integral method for Laplace’s equation, in conjunction with a finite-differel
method for Poisson’s equation with discontinuous right-hand side [29]. Their method 1
second-order accurate, even in very complicated regions, and had near-optimal work
mates. Extension of these methods to the variable-coefficient case or to three dimensi
pending. One significant contribution to the approach has been made by Greengard an
[17]. They combined a similar integral equation approach with spectral approximatior
an adaptive quad-tree data structure. The resulting combination was extremely well-s
for smooth right-hand sides with compact support.

Adaptive solutions of problems like (1) have been dominated by the finite element met
([6, 16, 21], in addition to many others). This approach has the advantage of a rigol
theoretical framework and a vast number of optimized commercial implementations. -
factors that must be considered, however, are grid generation strategies for compli
domains and the performance of the resulting data structures. Generally, when app
the finite-element method to moving boundary problems, one must take great care thz
grid generated is of good quality everywhere (see, for example, [35]). In addition, cl
attention must be given to efficient organization of the resulting data structure.

For the remainder of this paper, we will give the details of the algorithm and its imp
mentation. In Section 2, we describe the discretization in one dimension and provide s
analysis of the accuracy of the method, as well as the conditioning of the resulting lir
system. We then describe the nonadaptive algorithm for two dimensions in Section .
Section 4, we discuss our multigrid iterative method; Section 5 explains the modificati
needed to include adaptive mesh refinement. In Section 6, we present numerical test
and demonstrate the method'’s accuracy. Finally, the last section contains our conclu
and plans for future work.

2. ONE-DIMENSIONAL ALGORITHM

Consider the Poisson equation with Dirichlet boundary conditions, in one dimensior
oxx = p forx e [0, 1] with p(0) = ®°, () = F. 2

We discretize the interval [0] with N finite difference cells by first choosing a volume
fraction for the last cellA € (0, 1], and then defining the grid spacing as

I
AX = ————.
N—-1+A
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Then the size of each finite-difference cellAx, except for cellN which abutsx =1,
which is AXA wide. We denote by;,1/» the locations of the edges of the cells; thus
Xip12 =1AX, i =0,..., N =1, whilexyy1/2 = |. Our discretized solution is denoted as
¢i,i =1,..., N, the values of which are centered at the centers of cells of length

o %(p((i —%)AX), i=1,...,N.

Note thatgy is assumed to be centered at the center of the regular “Cartesian” cell, ra
than at the center of the last irregular cell, evenif the center of the Cartesian cellis outsid
problem domain. In that case, we are assuming that the solutian be extended smoothly
a small distance beyond the rightmost boundary, while the derivatives are bounded
constant times those for the solution in the interior. Our discrete solution will approxim
that extended solution to the appropriate order. The discretized right-hand side is cen
on the irregular cell:

— Xi—1/2 + Xi+1/2
pi=p|\——% |

Our approach is then based on a conservative discretization of (2) on each full or partial

Fiivi2 — Ficipe

(Lo) = = pi. 3)

Xit1/2 — Xi—1/2
On interior edges, we use centered differences to approximate gradients on cell edge

Fi+l/2:%, i=1...,N—1

Note that this same gradient discretization is used on the interior edge of the partial, cel
abuttingx =1 (Fig. 1). This expresses the idea that values of the solution are cell-cente
even if those centers amutsidethe domain. In addition, these gradients are accurate
O(Ax?), and in the interior of the domain, the discretization (3) reduces to the stanc
three-point finite difference scheme. It is well known that the cancellation of these errol
the gradient for constant grid spacing yields a second-order accurate discretization of

To approximate a gradient at=0, we fit a quadratic polynomial through the value:
@0, ¢1, andg,, and evaluate its slope at=0:

1
Fi2 = ——(9¢1 — ¢ — 80Y).
1/2 3Ax( p1 — @2 )

0 d,

d ez \-l‘;\dl_.
Dws 4

Ral? |
P R I VP

FIG. 1. Diagram of the second-order stencil for the gradient at |. A quadratic polynomial is fitted to
the two values o in neighboring cells and the value at the interface; the value in the last cell is not used in
calculation.
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This is a standard, second-order finite difference discretization. For the gradieatlat
we apply a similar one-sided difference stencil, but using values only in other cells. -
second-order difference stencil can be written as

1 d dy
F =—— (@ —¢pn_n)—= — (@ —pn_2)— ). 4
NH2 = g <( ON 1)dl ( oN 2)d2> (4)
The difference formula is depicted in Fig. 1 for the gradient at |. For partial cellN
abuttingx = 1, the resulting difference formula is
1 (dn —Pn-1) ) _ —
AXA (FN+1/2 - T) = PN> (5)

wherep), is the value of at the center of the irregular cé\l.

The truncation error of this method can be completely analyzedptbe the value of
the exact solution at centers of Cartesian celfs= ¢((i + %)Ax). Then the truncation
errort is defined as

5 = p; — (L¢®);.

Note thatr, like o and(L¢®), is centered on the irregular grid. The er§ce ¢ — ¢¢ satisfies
the following system of equations:

LE=7,®°=d"=0. (6)

We have the following error estimates for

11 = C1AX
4 =CAxX? i=2..,N-1, 7
AX
=Cn—.
N N A
Inthe estimates (74, . . ., Cn_1 are functions ofAx that are uniformly bounded inx

andi, providedy is smoothCy is a function ofAx and A that is uniformly bounded, as
both those quantities vary. At first glance this estimate\ofnay seem singular as — O.
However, if we multiply both sides ofL&)n =N by A, the resulting linear system is
well-conditioned and solvable uniformly iA. Ultimately, this leads to an estimate of
£ = O(Ax?), uniformly in A. We demonstrate this as follows.

To simplify the notation in the following discussion, we will usdo represent the fluxes
calculated using; . Multiplying both sides of (3) by 1,2 — Xi—1/2 and summing we obtain

Fii12 = Fnyyz + Z AXTj + AAXTN
i<j<N

Fniaz+ AX® > Cj 4+ Cyax® ifi >0
i<j<N

Fniyz+AX® ) Cj+CnAx?+ CAx? ifi =0
1<j<N

= Fni1/2 + Diy12A%% (8)
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where theD;’s are uniformly bounded i x, i, andA. Given this expression for the fluxes,
we can solve for thé’s:

AX
&1 = ?(3F1/2 + F3/2)

AX 3
= —Fny12 + E1AX
2
. 9)
§ =&+ Z AXFjy12, 1=2,...,N,

1<j<i
1 )
ER E AXFN+1/2+ Ei AXx“.

Again, theE;'s are uniformly boundedinx, i, andA. Combining (8), (9), and the boundary
condition (4), we obtain the following relation 6y 12

d d
AXFny12 = _EZEN—l + CTlSN—Z
1

d d d d
= (=20 —d) +—( —dp) Fna12 + LEN_o— —2En_1 | AX. (10)
d; d d> d;

Solving for Fn41/2, we finally obtain

d?En_p — d2EN_1
[(d1 + do)

Thus, Fny12 1S O(AX?), uniformly in A. From this and the estimates (9) we obtain th

result thatt is O(Ax?) uniformly in A.

We can obtain more detailed information regarding the effect of the larger truncation €
in the irregular cell. We computg, the contribution t& from tyy separately, by solving

Fni12 = (11)

(Lép)i =0 ifi #N

12
(L&p)N = TN (12)

Using the explicit form of the solution given above, we find in that case that

‘(NAXZA .
Fi+l/2=@=o(AX3), i=0,...,N,
dl d2

so thattp = O(Ax3) uniformly in A. Thus we observe that the apparently singular contt
bution to the truncation error in the irregular cell does not lead to a singularity in the e
estimate, due to the multiplication by the length of the cell in (8). In factthe contribution
to the error, is two orders smaller thag, uniformly in A.

This fact can be understood from the point of view of potential theory. We can view
error equation (6) as being approximated by a continuous potential theory problem for
in which the charge is piecewise constant in cells with values given by thén that case,
the contribution to the fiel§ from ty, in the sense of (12) is given by a dipole locatet at
of strength

(Total charge in the celix (Length of the ce)l x (Distance of cell center from boundary
~ 1y x (Length of the cel? = O(AX®)
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FIG. 2. We plot the effect of volume fraction, on the two-norm condition number of the linear system,
DL, whereD is a diagonal matrix with ones on the diagonal, excepiQx, = A (N = 50 here). Our system’s
(dashed) condition number does not vary significantly withwhereas that of the piecewise-linear Galerkin
discretization, withN — 1 variables and the same grid spacingQicA ™) (solid).

uniformly in A. The reason this is a dipole, rather than a monopole with chargery;, is
that the effect of the homogeneous Dirichlet boundary conditiboathe field induced by
7y can be represented by an image charge with the same total charge, but of opposite
located at a distanc%AAx to the right ofl. Such a dipole distribution induces a field of
strengthO(Ax3). We have shown that the conclusion from this potential-theoretic mo
is rigorously correct in one dimension. For the extension of this algorithm to two sp:
dimensions in the next section, we will use this idea to interpret the various contributi
to the error observed numerically.

Finally, we wish to emphasize that the use of a stencil for the irregular boundary 1
that is well-separated from the boundary is essential. The use of such a stencil leads:
uniform boundedness of the conditioning of the linear algebr& approaches zero. This
is definitely not the case with more conventional Galerkin approximations on this kinc
irregular grid. In Fig. 2 we plot the condition number of the volume-weighted matrix vers
A, with N =50, along with that of a piecewise-linear Galerkin discretization, Witk 1
degrees of freedom and the same cell sizes. Note that we have effectively eliminate
problem of poor conditioning in the presence of arbitrarily small volume fractions. The pr
we pay is that the matrix is not symmetric due to the gradients calculated from quadt
polynomials. Also, the solution may not satisfy a discrete maximum principle, gigce
will be centered outside the domainAf< %

3. TWO-DIMENSIONAL CASE

The algorithmin the previous section extends naturally to more space dimensions, bec
it is based on a finite-volume formulation. The dependent variabk® cell-centered on
a uniform rectangular gridp; j ~ ¢((i — %)Ax, (j— %)Ay), whereyp is a solution to (1).
The operator is discretized by integrating (1) over the control volume of each cell; howe
to calculate this integral we must first define how the domain boundary is represented
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FIG. 3. Diagram showing (a) the control volume formulation, which is based on the divergence of apj
priately-centered fluxes, and (b) how a properly centered normal derivative is found by interpolating betweel
neighboring values.

use a piecewise-linear representation in each cell, which is defined by the intersectit
the domain boundary, or “front,” with the cell edges (Fig. 3). The volume fraction and frc
normal are then determined from this representation. In eacti cgll a simple relationship
exists between the inward-facing normathe area of the frond\¢, and the area fractions,
called aperturesy € [0, 1], of the cell edges:

Aif,,- Mi,j = AX(@12,) — @-1/2. )T + AY(@ jr172 — &,j-1/2) ]- (13)

Here the apertures 1/, & j11/2 are the fractions of the cell edges centered atl i,
a,j+ %) that are not covered by the body. For full cells, all aperture values are ur
implying that AT is zero, andA = 1, while in partial cellsAf is nonzero. Note also that
this interpretation disallows boundaries of very narrow bodies (with width lessAkan
A similar algorithm can be used for three dimensions, where the cell faces are def
analogously and they in turn define the front normal and area. See [32] for a discussic
this kind of geometry discretization and some of its limitations.

A critical feature of this approach is the assumption that the solution can be exter
smoothly outside of2. In Fig. 3, for example, two of our grid values are covered by tt
body; nonetheless, we assume that there are solution values for them that are suffic
smooth so that a truncation error analysis based on Taylor expansions will be valid. |
make the usual assumptions regarding the smoothness of the solution and smoothn
the boundary, this is always the case. Specificalf/*& function defined in a domain with
a boundary that is als8** can be extended to any larger open domain in a way so that
Cck« norm is bounded by that of the original function, times a constant that depends «
on the two domains ankl [19]. This result does not depend on whether the function is
solution of some particular differential equation, but only on the smoothness of the func
and of the boundary.

The first step in the derivation is to integrate (1) over each cell’s control volume ¢
take the divergence of surface fluxes. In order to best approximate the surface integ
these fluxes, they are centered at the midpoint of each full or partial edge, as in Fig. 3a
resulting difference operator can be written as

f
(Leij = m(FHl/Z,j —Fi_y2j + Fijty2 — Fij-12— R)).
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where we have introduced the volume fraction,; € [0, 1], andF, the flux through each
surface of the control volume in Fig. 3a. For full edges, the flux is found by first calculat
a gradient ofp normal to the face, using central differencing of neighboring cell value
Note again thab is treated as a cell-centered quantity, even when that center is bey
the domain boundary (as demonstrated in Fig. 3). Finally, to calc&#Hatbe gradient is
multiplied by 8, evaluated at the midpoint of the face, and the area of the face. For the
edge afi + 1, j), this reduces to

(Bi1j — bij)

AX '
For full cells, it is obvious that this reduces (14) to the standard five-point finite differer
stencil for (1). In partial cells, some of the apertugeare nonunity, implying that® is
nonzero. In that case, we must do some additional work to construct second-order acc
fluxes.

On a partial edge, the centering of the gradient gsthould still be the midpoint of that
edge. Therefore, to calculate the normal gradient, we have chosen to linearly interp
between values at the midpoints of full edges. More specifically, in Fig. 3b, the partial e
i+ % j) has midpointn, aperturea, and neighboring edge + % j +1), the flux is found
using the formula

Fii12j = AYBit12j (15)

A+a) (Pigrj — i) n A-3) (Pisrj+1— Pij+1)
2 AX 2 AX ’

Fit12 = aAy fm (16)
where the quantity in brackets is the interpolated gradiﬂn;l/z,j, atm. This reduces to
(15) whena = 1 and provides a second-order accurate approximation of the fluxes thro
cell edges.

To obtain a consistent discretization of (148 should also be based on quantitie:
centered at the midpoint of the front. Because only the normal component of the grac
contributes to the resulting flux, we have chosen to calculate it using values along a
normal to the interface, and passing through its midpoint (see Fig. 4). As in one dimens

FIG. 4. Diagram of the second-order stencil for the gradient normal to the intedfack the inward normal
has an orientatiof9| < m/4, then two values are found from a column of neighboring cells, using quadra
interpolation. The gradient is then calculated by fitting a parabola to the interpolated values and the val
the interface. A similar stencil applies wher'4 <6 < 3w /4, except that neighboring rows are used for the
interpolation stencil.
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we employ a three-point gradient stencil, using values from cells other than the current
To do this, we select the first pair of parallel grid lines that intersect with the line norma
the interface, but which do not pass through the current cell. We then interpolate betv
values along each grid line (marked with circles in Fig. 4), to the intersection points (matr
with boxes in Fig. 4). To obtain a second-order accurate gradient, we must use quac
polynomial interpolation along grid lines and then apply the gradient formula as in «
dimension:

1 d d
f 2 f I 1 f I
=— | — (&' — —— (o' - . 17
a d—dy (d1 ( ¢1) dz ( ¢2)) )
Here we have usedi f for the value ofp on the front; this is given by the Dirichlet boundary
condition at the front’s midpoint. Interpolation along grid lines determifieandg, at the
points distancel; andd, away from the interface. Finally, we can evaluate the interfa
flux,

Ffr=p"A'q", (18)

giveng ', the value ofg at the midpoint of the front.

By constructing the gradients in this fashion, we impose one more constraint on
discretization of the domain: the interpolation stencil must not reach into cells with z
volume. For the quadratic gradient stencil, this may imply certain constraints on the
cretization of the domain. However, the fact that a zero-volume cell is within two rows
another partial cell would indicate that the local boundary is substantially underresol
Such domains are more appropriately treated with adaptive mesh refinement, whi
described in Section 6.

Using arguments similar to the one-dimensional case, we can compute the local trunc
error. We assume that= ¢(X, y) is a smooth solution to (1) for the case tpa{3, ando2
are smooth. We further assume thatan be extended smoothly to a slightly larger open s
containingQ2. Then forAx, Ay sufficiently small, we can define the truncation erroy:

T =pij— (L%

()

Note that here, as in one dimension, the dependent vaélideentered on the rectangular
Cartesian grid, while the truncation error is centered at the centroid of the partial cell:
that case, we have the following estimates of the truncation error:

(19)

75.; = Ci,jAx? for interior cells

A
=G TX for partial cells (20)

HereAx = Ay/a for some fixedr > 0, and the coefficients; ; are bounded independent of
AX, A, and(i, j). Forinterior cells, we obtain the standard centered-difference cancellal
of error so that the local truncation error@(Ax?). On the partial cells, that cancellation
does not take place, so that the standard Taylor-expansion arguments, plus the fac
the truncation error in the flux calculations@Ax?), lead to the estimate given above
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Based on a similar potential-theoretic argument as discussed in the one-dimensional
we expect that the estimates (19) are sufficient to guarantee second-order accuracy
solution. Specifically, we consider the error equation

L& =1, £=0¢—9¢"° (21)

If we approximate this as a continuous potential theory problem with a piecewise cons
charger; ; on each cell, we expect the contribution of each cefltobe proportional to the
total charge on that cell. For an interior cgll j ), the total charge ig j x« Ax? = O(AX%).
There aréD(1/Ax?) such cells, leading to a contribution®f Ax?) to&. The total charge in
an partial celli, j)is 7 j x AaAx? = O(Ax3) uniformly in A. However, the contribution
to £ from that charge is a dipole field that is one order smallexini.e. O(Ax*). This is
because of the influence of the homogeneous Dirichlet boundary condition, whose e
on the field induced by the charge in the partial cell can be represented as an image ¢
of the same strength, but of opposite sign located a dist@rieex) away from the partial
cell just outside the boundary of the domain. There @@&/AXx) such cells, so that the
contribution to the error i©(Ax3), uniformly with respect to the range of values taken o
by the A ;’s. We will verify in detail this behavior in our discussion of the results below.

4. MULTIGRID ITERATIONS

In order to efficiently find the solution to the linear system derived from (14), we ha
adopted the use of multigrid iterations [11]. The multigrid method is based on combin
simple point-relaxation schemes and a hierarchy of coarser grids. After applying poin
laxation on the finest grid, a correction term is found by representing the fine-grid resic
on the next coarsest grid, and using point-relaxation there. This is applied recursively,
the hierarchy of grids, until the problem is coarsened enough to be solved directly. The
rection terms are then interpolated back up the hierarchy, while applying point-relaxa
at each level. In all, this is called a multi-grid “V-cycle.” Multigrid methods have the du
benefit of low memory overhead and theoretically optimal convergence rate. Generally
method’s difficulties are in defining appropriate “coarsened” operators, along with rest
tion and interpolation functions; poor choices can result in significantly slower convergel

The grid hierarchy is generated as follows. The coarse gird’s spacing in each direc
is twice the fine grid’'s, and a coarse grid’s apertures and normals are defined exactly
those of a fine grid: intersection points of the domain boundary with coarse-cell edges d
the apertures, which in turn defie’ andn (Fig. 5). However, a coarse cell’s volume is
defined as the sum of its corresponding four fine-cell volumes; this is required to main
the flux-difference form of (14). The interface gradient stencil is then determined from t
coarse interface representation. This definition of the geometry does have one drawbe
still requires that the interface not cross @amarsecell edge more than once. In addition, the
limitations of the finite-difference stencil fof' must be considered. On very coarse grids
these constraints can be violated, and so they determine the end of the coarse-grid hier:

The details of the multigrid iteration scheme are straightforward, once the gird hierar
is established. The point relaxation scheme that we use resembles a multiplicative Sct
algorithm from domain decomposition [12]. On the partial cells, we perform one poit
Jacobi iteration, while holding the values in the full cells fixed. We use this for ease
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FIG.5. Diagram of the coarsening strategy for the multigrid method. The coarse grid preserves the apel
and volumes of the fine grid, but uses a coarser, piece-wise linear representation.

programming, and any other point-relaxation scheme could be applied to the partial
as well. For iteratiomn, the point—Jacobi iteration is expressed as

oy = = (i~ Lo @2)
wherey is the diagonal entry of; j. Note that even though is O(A[jl), it cancels with
the operator’s denominator. We then perform one sweep of Gauss—Seidel relaxatic
the full cells, with either red or black ordering, while holding the partial-cell values fixe
The partial cells, along with the full cells used in the stencil for (14), define a region
overlap between the two domains. Although we can provide no convergence analysi
this approach ([12] might provide a good starting point), the convergence rates for the e
multigrid procedure demonstrate its efficacy.

The residual is restricted to the coarser grid by volume-weighted averaging; the defin
of the coarse volume then ensures that a congiaist coarsened properly. The finite-
difference stencil for the gradient on coarser grids is found in the same manner as o
fine grid. On the coarsest grid, we apply the point-relaxation procedure as many time
there are valid points. This is the simplest option and requires no additional memor
data structures. The coarse correction is then treated as piecewise constant on all cells
interpolating back up the grid hierarchy. In [10] it was shown that this is sufficient to obt
multigrid-type convergence for cell-centered finite differences; it is also the least exper
approach, and point-relaxation quickly redistributes coarse corrections locally.

5. ADAPTIVE MESH REFINEMENT

Oftentimes, the solution provided by a single, uniform discretization of the domain n
not be accurate enough. Large gradients in the solution or variation in the domain bo
ary can require a finer grid spacing than is available with limited computer resources
adaptive mesh hierarchy enables one to increase grid resolution where necessary; st
approach can greatly reduce the memory required to obtain a given level of accuracy
algorithm uses block-grid refinement, based on the work of Berger and Oliger [9]. This |
mits us to use regular computational data structures, instead of a linked, quad- or oc
object (for example, as used in [17]). The algorithm is implemented in a hybrid C++ ¢
Fortran code, where complex organizational tasks are accomplished in C++ data stru
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FIG. 6. The stencil at the coarse—fine interface is represented. A value is found on a fine-level grid line, f
quadratic interpolation on the coarse level. This value, along with two values on the fine grid, is used to calc
a gradient at the coarse—fine interface. Note that the coarse-grid stencil can shift when necessary.

library, BoxLib[34]. Single-block calculations are performed in Fortran. An excellent di
cussion of the software issues that have been dealt wBoxbibcan be found in a paper
by Crutchfield and Welcome [15].

Our adaptive algorithm is based mostly on work and source code from Cartwright
Martin [28] for adaptive solution of Poisson’s equation on rectangular domains. In partict
(14)is used to discretize (1) in every cell, on all levels. Again, the burden of accuracy falls
the discretization of edge gradients. Interfaces between fine and coarse levels have flux
are defined by the sum of the more-accurate fine level fluxes (Fig. 6). These are calcu
using one-sided difference stencils on the fine level, along with a value interpolated f
nearby coarse-level cells. This is required to maintain the accuracy of the gradient calcul:
on the fine grid. As is implied in Fig. 6, a quadratic polynomial is fitted to the values
three coarse-grid cells lying beside the fine grid. Then, a second parabola is fitted tc
values normal to the boundary, using two fine grid points and the value interpolated f
coarse-grid cells. The gradient is then evaluated at the coarse—fine interface. This proc
results in second-order accurate fluxes at the coarse—fine interfaces, which in turn mea
discretization of (1) has first-order truncation error at the coarse—fine interface. Howe
the coarse—fine interface is a one-dimensional set, so we expect the error in the sol
to be second order in the mesh spacing. Of course, this is not the only procedure tha
produce a second-order accurate flux; see [24] for another common approach.

A detailed description of this algorithm and the multigrid iteration scheme used to sc
the resulting linear system, can be found in [28] or [31]. The changes required to ext
this algorithm to our embedded-boundary method are straightforward. The level re
ation scheme is that described in the previous section, suitably modified to account fo
coarse-fine boundary conditions. The averaging and interpolation operators that trar
information between AMR levels are also taken from the multigrid algorithm. Also, v
use a simplified refinement criterion, which forces refinement at all partial cells, along v
suitably chosen buffer so that the values required for the boundary interpolation stenci
be obtained using data from the same grid level. All refined cells are grouped into bl
grids, for computational efficiency.

6. NUMERICAL RESULTS

We have chosen four simple problems to demonstrate the algorithm, and verify bott
single-grid and adaptive algorithms. For the first two problems, the domain is definec
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the set
Q={(r,0):r <030+ 0.15cos®}.

The domain (Fig. 6) is sufficiently complicated to test the algorithm, without compromisi
the requirements of the finite-difference stencil mentioned in Section 3.

The boundanp <2 is discretized by first representing it as a parameterizati@), we
then choose points in this parameterization, which are no moresthanapart (the fol-
lowing calculations use = 0.3). By connecting these points, we form a piecewise-line
representation of the interface. The intersections of this representation, with the finest le
grid lines, define the apertures; these then define the area of the front from (13). We
include two modifications to this grid generation algorithm. The first is related to the ¢
requirements described above and in [32]; if the boundary representation enters and |
a cell through the same edge, the intersections with that edge are ignored. In effect
“clips” the boundary where it crosses the same cell edge twice, and we assume tha
does not change the topology of the computational domain. The second modification, w
occurs rarely in practice, is to adjust the boundary to remove cells with volumes less
10-%AxAy. This amounts to shifting the boundary points by at mo%e® of thegrid
spacingand incurs negligible error relative to that of the numerical algorithm.

The norms used in the following analysis warrant some additional explanation. We r
first separate the computational domain into the adaptive leRklgherd is the number of
cells per unit length, in each grid direction. For exampl&’ designates the set of all valid
cells with a grid spacing oAx = 8%, that are not covered by a finer level (i.e., Fig. 10a
The entire computational domain is then definedSby= (J Q'. We note again that the
domain boundary is represented only on the finest level, which can be divided into two
of cells: 2|, which consists of full cells; angt,, consisting of partial cells. The set of cells
on the finest level is then just = Q| U QL. Unless otherwise noted, cell counts for a leve
Q' refer to the number of uncovered full or partial cellssiy this excludes both dummy
values outside the domain, and values covered by finer levels.

We can now define a volume-weighted norm of a varigi@ some set of cell€,

1/p
leld @ = > lejPAiVv'/ > AV (23)

(i, e (i, e

whereV' = AxAy is the full cell volume on a given level. An unweighted norm,||$,
merely removes\; ; from Eq. (23). Anyoco-norm, || - || is just the maximum value over
the cells inQx. We can now define the rate of convergence between two nefrasde,,
with two different grid spacingk; andh,, as

€ hl)
r =log|( — log|{ — ).
9 < € > / 9 ( h2
Thus withh; < h,, arate of =1 for the two errorg; ande; indicates a first-order accurate

method.

PrOBLEM 1. We first set8 =1, to demonstrate several results for Poisson’s equatic
The values of the right-hand side are given by the exact Laplacian of the solution,

Ap = Tr?cos 3,



74 JOHANSEN AND COLELLA

FIG. 7. We plot the domain for Problem 1 and present a contour plot of the exact solution with 40 eve
spaced contour lines betwee®.0412.

evaluated at the centroid of each finite-difference cell. This is represents the average
in (14) to O(Ax?). Note that fourth-order derivatives gfare discontinuous at the origin,

and higher-order derivatives are singular. Dirichlet boundary conditioaxare specified
by the exact solution,

@(r,0) =r*cos 3,

which has a maximum value of abat0.041 atr = 0.45 ond <2 (a contour plot of the exact
solution is given in Fig. 6). The exact solutigrenters into the discretization by taking its
value at the midpoint of the frontin each cell (Fig. 7) and using this as the vaibibiof(17).
We will first analyze the algorithm with uniform grid spacing over the domain. W
compute the truncation errar, defined in (19), for this solution. In Table 1, we can stil
see thatAt is O(AX) on Qp, consistent with the error estimate (20). In the same tab
we see that the interior truncation eri@ron 2,), which is due to the standard five-point
difference scheme, i©(Ax?). Because the domain is star-shaped, we canduas an
independent variable as we walk along the interface. In Fig. 8a, weAplotrsus the angle
0, in Qp only (partial cells); obviously, it is certainly not a smooth function, and contains

TABLE 1
The Norms and Convergence Rates of the Partial-Volume-Weighted Truncation Error
for Problem 1

N ATl r IATlE? r NP Il r N'

40 120x 10t 2.63x 1072 208 166 x 103 400

80 771x 102 0.64 145 x 102 0.86 420 415 104 2.0 1824
160 420 x 102 0.88 735x 1078 0.98 856 104 x 104 2.0 7712
320 218 x 102 0.95 373x 108 0.98 1716 59 x 10°° 2.0 31716

640 111x 1072 0.98 189 x 1073 0.98 3416 9 x 1078 2.0 128604

Note.The values in partial cells are first order in the grid spacing, while values in the interior are second o
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FIG. 8. For Problem 1, we plot (a) the magnitude of the volume-weighted truncation error and (b) the pa
volume, on2p versus. Note that the former is bounded, even for arbitrarily small volumes.

substantial high-wavenumber component. This is due to the error being dependent on
nonsmooth factors, such as the apertures and distance to interpolation lines. In Fic
we plot the volume fractiom. as a function o). We see that\t is bounded, even when
A < 1073,

We can also measure the error in the discrete solutipdefined in Eq. (21). However,
to elucidate the resulting behavior, we have also computed solutions to two subprobl
Specifically, we solve

Lé&p = 1p (24)
L& =1,
wherezp, 1) are, respectively, equal to the truncation error on the partial and full cells,
zero elsewhere. In that cages= &p + &, andép andg,; represent the contributions of the
error from the interior and the irregular boundary, respectively. In Table 2 we seg-tha
converges at a rate~ 3 in theoco-norm. Our explanation of this behavior is the potential
theoretic model for the error on the partial cells described at the end of Section 2.
partial cells induce a dipole distribution on the boundary, due to the homogeneous Diric
boundary condition for the error equation. The field induced by this dipole distribut

TABLE 2
The Two Components of the Solution Error in Problem 1 and Their
Corresponding Convergence Rates

N lEpllS 1% r lEpll? r &g r &g r

40 589x10° 585x10° 9.33x 10°° 1.38x 107 8.34x 10°¢

80 735x10°% 736x10° 3.0 133x10° 28 397x107 18 102x10° 3.0
160 117x10°® 117x10°% 2.6 176x107 29 105x107 19 107x107 3.2
320 167x107 168x107 28 227x10°® 3.0 270x10® 2.0 180x10% 2.6
640 226x10°% 227x10® 29 286x10° 3.0 684x10° 20 502x10° 1.8

Note. The error induced by the truncation error in partial cell©igAx?), whereas that due to the interior
truncation error is onlyD(AX?).
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FIG. 9. Plot of the one-norm of the error in the discrete solutipnand its two componentg;, from the
O(AX) truncation error or2p; andg,, from the O(Ax?) truncation error or2,. Note thaté, converges like
O(AX3), while &, converges a®(Ax?).

is O(Ax3), uniformly in the range of values taken on by thés. However £, is strictly
second-order accurate. Table 2 demonstrates that the overall solution error converges a
of r ~ 3 for coarser grids, and is then only second-order accurate for finer grids. Figu
demonstrates this for the one-norm. Essentially, the error on coarser grids is dominate
the effect of the truncation error in partial cells; for finer grids, the effect of the inter
truncation error begins to dominate. Bgthandg, converge to zero at the stated asymptoti
rates; however, their sum does not settle down to its asymptotic ratesuptikp. This
leads to some anomalous behavior in the convergence rate Far example, the rate of
convergence fofi£||S! appears to be less than second order, even though both summ:
are converging at rates greater than or equal to second order. The reason for this is
seen in Fig. 9. At the grid spacing whefgp| and ||&, | are comparable, there is partial
cancellation between the two components of the error. At the finer grid spacings, as
cancellation diminishes because of the more rapid convergerge thfe convergence rate
of & decreases slightly as it asymptotegito

With this in mind, we can also demonstrate some benefits of adaptive mesh refineme
this problem, even though the right-hand side is evenly distributed over the whole dor
Table 3 shows three cases using adaptive mesh refinement:

e Case 1. Two levels of refinement, with coarsest |&¥&l
e Case 2. Two levels of refinement, with coarsest &P,
e Case 3. Three levels of refinement, with coarsest I©}Y.

In each case, we refine only the boundary region, subject to the constraint that each
block has at least eight points in each direction. By refining around the boundary, we
reduce the impact of the larger truncation error there. For example, the error in the ada
solution for Case 1 and Case 2 is roughly that of the finest grid, yet both require fewer pc
than a calculation with uniform grid spacing. However, the effect of the interior truncati
error is seen again in Case 3; the algorithm is not able to improve the solution significa
without global refinement, since the truncation error in the interior is evenly distributed
this problem.
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TABLE 3
Solution Error for the Algorithm with Adaptive Mesh Refinement for Problem 1

Level Q80 Q160 Q320 Q640 Overall Uniform
Casel NinQ' 896 4984 5880 8568
IISHiI 1.05x 10® 1.36x 10° 1.36x 10® 1.17x10°
||§|\§7I 287x 107 224x107 251x 107 1.07x 107
Case2 Ning' 5568 11160 16728 33432
||§H§ 236x 107 258x 1077 258x 107 1.68x 1077
||§|\§2I 939x 108 4.49x 108 7.75%x10% 180x 10°8
Case3 NinQ' 4480 9664 21684 35828 132020
IISI@I 279% 107 320x 107 150x107 320x107 227x10°%
||é|\§ZI 1.02x 107 840x10° 235x10®% 840x10% 5.02x10°

Note.The solution error norms for the grids on each level of refinement is given in the first four columns.
composite error for the entire calculation is given in the fifth column. Cases 1 and 2 have one level of refiner
while Case 3 has two. The last column contains results for the nonadaptive calculation, with grid spacing the
as the adaptive calculation’s finest level.

PrOBLEM 2. Here we include variation in the coefficight
B(r,0)=1—r?

which is evaluated at the midpoint of the actual edges in the finite-difference cell of Fic
The right-hand side is then given by

V- BVe = (Tr?—15%cos 3,

so that the exact solution is the same as in the first problem. Again, the solution is evalt
at cell centers when calculating the truncation error, and the right-hand side is evaluat
cell centroids. We can see from Table 4 that the nonadaptive cases have results sim
those of Problem 1.

We can also analyze the effectiveness of the multigrid algorithm for this problem. E
multigrid iteration applies the point-relaxation scheme four times (i.e., four full sweep:s
Gauss-Seidel relaxation), before and after the coarse-grid correction is applied. Figu
plots the norm of the residual,

IA(LS™ = P)II%E,

TABLE 4
We List Errors and Convergence Rates for Problem 2

N IATIS r €N r IENT r

40 960 x 102 5.86 x 10°° 8.16x 10°°

80 617 x 1072 0.64 730x 10°° 3.0 957 x 1077 31
160 336x 1072 0.88 117 x 10°° 26 958 x 107 33
320 175x 1072 0.94 168 x 1077 2.8 200x 10°® 2.3
640 884 x 10°° 0.99 228x 10°° 2.9 600 x 10°° 1.7

Note.The results are very similar to those obtained in Problem 1.
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FIG. 10. Plot of theco-norm of the partial volume-weighted residual versus multigrid iteratiofor the
single-grid and adaptive-grid solutions of Problem 2. The number of iteration for the single-grid algorithm are
N = 40, 80, 160, 320, 640 (solid lines from bottom to top); the adaptive results correspond to Cases 1-3 (s
lines with plus signs, also bottom to top).

versus the iteration numbem, for all the calculations on a uniform grid. The solutignis
initialized to zero, so that the initial residual grows@&Ax~2), due to the inhomogeneous
boundary conditions. Our multigrid algorithm reduces the residual by about an orde
magnitude per iteration, even as its norm approaches the cutoff ét.Ithere is a slight
decrease in performance as the grid spacing is reduced, so that the reduction rates are
8.5 for the finest grid. The adaptive cases are shown in Fig. 10, also. Even with the coe
fine interface relations, we are able to obtain nearly an order of magnitude reduction ir
residual per iteration, despite the unsophisticated interpolation operator.

ProOBLEM 3. We also wish to show that the algorithm is second-order accurate
problems with Neumann-type boundary conditions. We solve Poisson’s equatier=on
Y1 N Yo, where

YTy ={(,0):r >0.254+0.05cos®}

ands; is the unit square centered at the origin (Fig. 11). Weps@t andp to be the same
as in Problem 1, with Dirichlet boundary conditions specified withn Y. OnY, we set
F f equal to the normal component of the exact solution’s gradier¥y, evaluated at the
midpoint of the front in each cell.

Table 5 shows that the truncation ertois O(Ax?) in the interior, while in partial cells
along Y1, At is O(AX). However, in each case, the effect of the truncation error on t
error in the solution i© (Ax?). The Dirichlet-type boundary condition in Problem 1 cause
£p to behave likeD(Ax3), because of the dipole field induced by the truncation error at t
boundary. With the Neumann-type boundary condition, this is a monopole field, sptha
is O(AX2).
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FIG. 11. We plot the domain for Problem 3 and present a contour plot of the exact solution, with 40 eve
spaced contour lines betwee.177.

PrOBLEM4. We also wish to test the algorithm for problems without analytic solutior
to demonstrate that values centered outside the domain do not cause problems. We
Laplace’s equation on the domdh= YN Y, from Problem 3 with the Dirichlet boundary
condition given byy = 1 onaY; and¢ = 0 onaY».

A plot of the solution is given in Fig. 12; we can see that it extends smoothly outs
of 37, and overshoots the boundary condition as a result. For equal grid spacing in
directions, the maximum principal for Laplace’s equation dictates ¢hsitould be less
than one for values oA < % because the cell center for such cells is inside the doma
Similarly, values in cells with\ > % should be greater than one. Table 6 shows the humt
of cells,k, in Qp that violate this criterion; we see that it is variable, but small, with respe
to the total number of points ifp. For the finest gridN =640 andk =0. We assume
that this violation occurs when a partial volume % is in a region with significantly
under-resolved gradients.

TABLE 5
The Results for Problem 3 Which Specifies Neumann-Type Boundary Conditions on the Front
N (K8 r AT r (Y r Igng r
40 166 x 1073 1.69x 102 3.59x 10°° 478 x 10°°

80 415x 10 2.0 977 x 107 0.79 870x 10°° 2.0 133x 10°° 1.85
160 104 x 10~ 2.0 528 x 107 0.89 215x 10°° 2.0 337x 10°® 1.98
320 259 x 10°° 2.0 259 x 1073 1.03 535x 1077 2.0 872x 1077 1.95
640 649 x 10°° 2.0 131x 1078 0.98 136 x 1077 2.0 221x 1077 1.98

Note.In this case, the truncation error behaves the same as the case with Dirichlet-type boundary condi
However, the solution error induced by the truncation error at the bound#@yAs<?) in this case, instead of
O(AX3).
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FIG. 12. Surface plot of the solution to Problem 4 fidr= 80.

To evaluate the convergence of the algorithm for the single grid case, we compare
solutions, with a factor of two difference in grid spacing. To do this comparison we m
interpolate the solution on the fine level, to the coarse grid cell centers. This is done
bilinear interpolation, denoted witB, between the four fine-level solution values closes
to the coarse grid cell center, as in Fig. 5. We can then define the error as the differ
between the two results:

%J — B||+1¢|+l _ ¢| on Q|| .

We do this only for interior cells on the coarse grid, because the values needed or
fine level, in order to interpolate to the center of a partial cell on the coarse-grid, are
necessarily available. Table 6 contains the convergence rates for this error, which are rot
second-order in both norms.

TABLE 6
Results for Problem 4
N N r lEny! r k/NP
40 127 x 102 2.82x 103 8/104
80 432x 108 1.6 628 x 104 2.2 0/208
160 127 x 1073 1.8 150 x 10* 2.1 4/408
320 245 x 10~ 2.4 300x 10°° 2.3 0/820

Note.The error between successive levels is approximately second order in the grid spacing. In additior
last column indicates that relatively few cells violate a discrete maximum principal.
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TABLE 7
Solution Error for the Algorithm with Adaptive Mesh Refinement for Problem 4
Following the Same Format as Table 3

Q80 Q160 Q320 Overall Uniform

Casel N in Q', 4288 3096 7384 20248
|\§||g 6.64 x 10 1.49x 1073 1.49x 1073 1.49x 1073
lene 1.48 x 10~ 3.71x 10 1.82x 10 1.80 x 10~
Case 2 N in | 3792 3664 6148 13604 81476
IEne 1.58 x 104 1.43x 104 2.46x 10 2.46 x 10~ 2.45x 10~
Bk 2.83x 10°5 6.42 x 10°5 7.45% 10°5 3.83x 10°° 3.00x 10°°

Note.Case 1 has one level of refinement, while Case 2 has two. Errors are found by comparing the soluti
value interpolated from the finest result. The last column contains results for the nonadaptive calculation,
grid spacing the same as the adaptive calculation’s finest level.

To demonstrate the AMR algorithm, we compare the solution on each level, to the solt
with the finest uniform grid spacing; i.e., we replag&! above withp®%°, whereQ®4is the
finest grid level in this case. Although the resulting errors are not appropriate for calcula
convergence rates, they are accurate up to the error on the finest grid. In Table 7, we se
the AMR algorithm is able to improve the accuracy of the method substantially, by mel
refining around the boundaries. In Case 1, with two levels, we are able to obtain results
the accuracy of the finest grid, with only 35% of the points; in Case 2, with three lev
this holds true with 17%. Figure 13a demonstrates the valid regions on which norms
computed for Case 1; Fig. 13b plots the solution and block grid structure.

7. CONCLUSIONS

The algorithm described in this paper satisfies a number of desirable criteria. The fi
volume formulation uses second-order accurate gradients for calculating surface flt
These gradients are calculated from cell-centered quantities, even when those cente
outside the domain. The truncation error for the resulting discretization for Eq. (1) is f
order in the mesh spacing only along the domain boundary, and second order in the int
In our four test problems, the solution is found to be second-order accurate on dor
with significant curvature and variation. We also observe numerically that the error indu
by the truncation error at the boundary, converges to zeroQik&x®). We have given a
rigorous proof that this is the case in one dimension, and in two dimensions we have ¢
a potential-theoretic model for the error induced by the discretization on partial cells
accounts for this behavior.

Our analysis in one dimension demonstrated that our discretization is well-conditio
even in the presence of arbitrarily small or thin cells. In addition, the multigrid algoritt
uses only a simple point-relaxation scheme, with volume-weighted restriction and piece
constant prolongation operators, and we obtain nearly the same multigrid reduction rate
the residual, regardless of grid size or quality. This suggests that we retain a well-conditi
system in more than one dimension.

We have demonstrated that our method is amenable to the introduction of adaptive |
refinement to improve the accuracy locally. We refine the cells containing portions of
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FIG. 13. We present two plots of the first quadrant of Problem 4, Case 1: (a) represents the valid regiot
each level; (b) gives grid block boundaries and contours of the solution.

domain boundary; this simultaneously refines the geometry description, while reducing
effect of the larger truncation error. The multigrid framework attains reduction rates for
adaptive grid hierarchy that are no worse than those with uniform refinement.

The method described here is a specific application of a general formalism for construc
consistent finite difference methods for problems with irregular boundaries. It is base
the general fact that a smooth function on a domain with a smooth boundary has a sn
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extension to any larger domain, where the extension has derivative bounds that de
linearly on those of the original function. Thus, one can apply this formalism to discret
any PDE for which a truncation error analysis based on Taylor expansions is expectt
give a reliable indication of the discretization error. We have applied this successfully
variety of parabolic problems [25]. In addition, there is ongoing work to use this appro
to deriving discretizations for hyperbolic PDE’s and problems arising in fluid dynamics

As with all finite difference methods, there is always a question regarding the beha
of the method when the solution or the boundary fails to be smooth, or is underresolve
the grid. Based on prior experience with related methods [32], we have reason to be
that this approach can be applied to a variety of PDE problems arising in fluid dynamic:
which the solution fails to be smooth or the gradients are underresolved. A major que:
that has not been addressed here is that of extending this approach to cases whe
geometry is not fully resolved on the grid. An example of this is that of thin bodies, i.e. ol
for which the thickness of the body is less th&r. This is an important issue; for example,
in performing multigrid iteration, a geometry can be fully resolved on the finest grid, wk
being a thin body after only a few coarsenings. This issue has been addressed else
[23], with the result that this class of algorithms described here can be extended to a t
class of general irregular geometries with essentially the same properties observed |
present work.

Finally, the present work suggests a new way of approaching discretizations for fixe
free boundary problems in which the boundary can be represented using a volume-of-
description. For example, in volume-of-fluid front-tracking methods such as those descr
in [7, 13, 24], these ideas could be used to obtain consistent discretizations of the PL
the neighborhood of the front. Such an approach has been successfully used for the
problem [25]. This is particularly important for problems such as the Stefan problern
problems with surface tension, in which it is necessary to discretize second order ell
and parabolic operators in the neighborhood of the front. A second application is in deri
conservative boundary conditions for overset grid algorithm of the sort discussed in [18
this case, the irregular boundary is not the boundary of the domain, but the boundary ¢
by an overlapping grid.

REFERENCES

1. L. Adams, A multigrid algorithm for immersed interface problemsPimceedings, 7th Copper Mountain
Multigrid Conference, Copper Mountain, CO, April 2-7, 199Seehttp://na.cs.yale.edu/mgnet/
www/mgnet-ccmm95. html]

2. M.J. Aftosmis, J. E. Melton, and M. J. Berger, Adaptation and surface modelling for Cartesian mesh mett
in AIAA 12th Computational Fluid Dynamics Conference, San Diego, CA, June 19-22,[A98A:95-
1725-CP]

3. A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, A conservative adaptive projecti
method for the variable density incompressible Navier—Stokes equaliddsmput. Physl42 1 (1998).

4. A.S. Almgren, J. B. Bell, P. Colella, and L. H. Howell, An adaptive projection method for the incompressi
Euler equations, ifProceedings, AIAA 11th Computational Fluid Dynamics Conference, Orlando, FL, Ju
6-9, 1993.

5. A. Almgren, J. B. Bell, P. Colella, and T. Marthaler, A Cartesian grid projection method for the incompress
Euler equations in complex geometri€&AM J. Sci. Compufl8, 1289 (1998).

6. |. Babuska (Ed.)Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differenti:
Equationg(Springer-Verlag, New York, 1995).



84 JOHANSEN AND COLELLA

10.

11.
12.
13.

14.

15.

16.

17.
18.

19.

20.

21.

22,

23.

24.

25.

26.

27.
28.

29.

30.

31.
32.

. J. B. Bell, P. Colella, and M. Welcome, Conservative front-tracking for inviscid compressible fl@g-in
ceedings, AIAA 10th Computational Fluid Dynamics Conference, Honolulu, Hawaii, June 24-27, 1¢
p. 814.

. M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodyndn@esnput. Phys82,
64 (1989).

. M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equatiGaespput.
Phys.53, 484 (1984).

J. H. Bramble, R. E. Ewing, J. E. Pasciak, and J. Shen, The analysis of multigrid algorithms for cell-cent
finite difference method#\dv. Comput. Mathb, 15 (1996).

W. Briggs,A Multigrid Tutorial (SIAM, Philadelphia, 1987).

T. F. Chan and T. P. Mathew, Domian decomposition algoritéwis, Numer.41 (1994).

I. Chern and P. Colell&# Convervative Front Tracking Method for Hyperbolic Conservation LawsSRL
JC-97200, Lawrence Livermore National Laboratory, July 1987.

P. Colella and L. F. Henderson, The von Neumann paradox for the diffraction of weak shockJv&ugs,
Mech.213 71 (1990).

W. Y. Crutchfield and M. L. Welcome, Object-oriented implementations of adaptive mesh refinement a
rithms, Sci. Programming, 145 (1993).

L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy, Toward a universal h-p adaptive finite elen
strategyComput. Methods Appl. Mech. Engy, 79 (1989).

L. Greengard and J. Lee, A direct Poisson solver of arbitrary order acclir@oynput. Phyd.25 415 (1996).

G. Chesshire and W. D. Henshaw, Composite overlapping meshes for the solution of partial differe
equations,). Comput. Phy<0, 1 (1990).

N. Gilbarg and N. S. TrudingeElliptic Partial Differential Equations of Second OrdéBpringer-Verlag,
New York/Berlin, 1977), Section 6.9.

L. H. Howell and J. B. Bell, An adaptive-mesh projection method for viscous incompressibl&fiom, J.
Sci. Comp18, 996 (1997).

C. JohnsorMlumerical Solution of Partial Differential Equations by the Finite Element Me{i@ainbridge
Univ. Press, New York, 1987).

R. J. LeVeque and Z. Li, The immersed interface method for elliptic equations with discontinuous coeffici
and singular sourceS|AM J. Numer. AnaB1, 1019 (1994).

M. S. Day, P. Colella, M. Lijewski, C. A. Rendleman, and D. L. Marcus, Embedded boundary algorithms
solving elliptic PDEs on complex domaink,Comput. Physsubmitted.

E. G. Puckett, A. S. Aimgren, J. B. Bell, D. L. Marcus, and W. J. Rider, A high-order projection method
tracking fluid interfaces in variable density incompressible flalv§omput. Physl30, 269 (1997).

H. JohansenCartesian Grid Embedded Boundary Finite Difference Methods for Elliptic and Parabol
Differential Equations on Irregular Domain®h.D. thesis (University of California, Berkeley, CA, 1997).
Z.Li, The Immersed Interface Method—A Numerical Approach for Partial Differential Equations with Int
faces,Ph.D. thesis (University of Washington, Seattle, WA, 1994).

Z. Li, A fast iterative method for elliptic interface problerSs8AM J. Numer. AnaB5, 230 (1998).

D. F. Martin and K. L. Cartwrigh§olving Poisson’s Equation Using Adaptive Mesh Refineriexdttronics
Research Laboratory Memorandum UCB/ERL M96/66, University of California, Berkeley, October 19
[Code and documentation availablehattp: : //barkley.me.berkeley.edu/~ martin/public_html/
AMRPoisson.html]

A. Mayo, The rapid evaluation of volume integrals of potential theory on general rediddsmput. Phys.
100, 236 (1992).

A. McKenney, L. Greengard, and A. Mayo, A fast Poisson solver for complex geométi@smput. Phys.
118, 348 (1995).

M. Minion, A projection method for locally refined grids,Comput. Physl27, 158 (1996).

R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. Welcome, An adaptive Cartesian grid met
for unsteady compressible flow in irregular regiohsComput. Physl20 278 (1995).



EMBEDDED BOUNDARY FOR POISSON’S EQUATION 85

33. C. S. Peskin and B. F. Printz, Improved volume conservation in the computation of flows with imme
elastic boundaries, Comput. Physl05 33 (1993).

34. C. Rendleman, BoxLib tutoriahttp://www.nersc.gov/research/CCSE/software/boxlib.tuto-
rial/boxlib.html.

35. A. Schmidt, Computation of three dimensional dendrites with finite elem&n@ymput. Phys125 293
(1996).

36. D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samant, and J. E. Bussoletti, A loc
refined rectangular grid finite element method: Application to computational fluid dynamics and computati
physicsJ. Comput. Phys$2, 1 (1991).



